Vladimir Мikhalkinsky: Plaited lattice in triangular prisms
Vladimir Мikhalkinsky: Plaited in triangular prisms (Vladimir Mikhalkinsky)
Vladimir Мikhalkinsky: lengthening of the lattice rhombic
Vladimir Мikhalkinsky: 1/4 lattice octahedron\cuboctahedron
Vladimir Мikhalkinsky: Plaited octahedron\cuboctahedron lattice (Vladimir Mikhalkinsky)
Vladimir Мikhalkinsky: Семь ромбоикосододекаэдров из 12 переплетенных колец
Vladimir Мikhalkinsky: Three United sphere of 12 interlocking rings
Vladimir Мikhalkinsky: Четыре сплетенные додекаэдра из 12 колец
Vladimir Мikhalkinsky: Сплетенные из колец 8 кубиков
Vladimir Мikhalkinsky: six disjoint rhombic prisms around a cube
Vladimir Мikhalkinsky: A slanting grid of disjoint rhombic prisms
Vladimir Мikhalkinsky: Prism on the side of the cube
Vladimir Мikhalkinsky: 64 peaks from 6 rhombic prisms
Vladimir Мikhalkinsky: 12 disjoint triangular prisms (1x1x3 diagonals)
Vladimir Мikhalkinsky: 12 disjoint triangular prisms (1x1x3 diagonals)
Vladimir Мikhalkinsky: Disjoint triangular prisms between rhombic dodecahedrons in a body-centered lattice (1x1x3 diagonals).
Vladimir Мikhalkinsky: Triangular prisms between rhombic dodecahedrons (1x1x3 diagonals).
Vladimir Мikhalkinsky: Prism position between cubes
Vladimir Мikhalkinsky: 12 disjoint triangular prisms
Vladimir Мikhalkinsky: 12 prisms (diagonal 3x3x1)
Vladimir Мikhalkinsky: 12 prisms at the vertices of the zonohedron
Vladimir Мikhalkinsky: Cubes for spatial filling with twelve deltoid prisms (diagonals 1x1x3).
Vladimir Мikhalkinsky: A cube for filling the space with twelve deltoid prisms.
Vladimir Мikhalkinsky: Cubes for spatial filling with twelve deltoid prisms. Diagonals 1x2x2.
Vladimir Мikhalkinsky: Four twos non-intersecting frames and 8 triangles.
Vladimir Мikhalkinsky: 4 non-overlapping frames for spatial filling
Vladimir Мikhalkinsky: Dimensions of four non-overlapping frameworks.
Vladimir Мikhalkinsky: Cube with twelve non-overlapping deltoid prisms for spatial filling. Diagonals (1,2,2)
Vladimir Мikhalkinsky: Eight triangular prism frameworks with no intersections.
Vladimir Мikhalkinsky: 24 triangular prism frames without intersections.