Vladimir Мikhalkinsky:
Plaited lattice in triangular prisms
Vladimir Мikhalkinsky:
Plaited in triangular prisms (Vladimir Mikhalkinsky)
Vladimir Мikhalkinsky:
lengthening of the lattice rhombic
Vladimir Мikhalkinsky:
1/4 lattice octahedron\cuboctahedron
Vladimir Мikhalkinsky:
Plaited octahedron\cuboctahedron lattice (Vladimir Mikhalkinsky)
Vladimir Мikhalkinsky:
Семь ромбоикосододекаэдров из 12 переплетенных колец
Vladimir Мikhalkinsky:
Three United sphere of 12 interlocking rings
Vladimir Мikhalkinsky:
Четыре сплетенные додекаэдра из 12 колец
Vladimir Мikhalkinsky:
Сплетенные из колец 8 кубиков
Vladimir Мikhalkinsky:
six disjoint rhombic prisms around a cube
Vladimir Мikhalkinsky:
A slanting grid of disjoint rhombic prisms
Vladimir Мikhalkinsky:
Prism on the side of the cube
Vladimir Мikhalkinsky:
64 peaks from 6 rhombic prisms
Vladimir Мikhalkinsky:
12 disjoint triangular prisms (1x1x3 diagonals)
Vladimir Мikhalkinsky:
12 disjoint triangular prisms (1x1x3 diagonals)
Vladimir Мikhalkinsky:
Disjoint triangular prisms between rhombic dodecahedrons in a body-centered lattice (1x1x3 diagonals).
Vladimir Мikhalkinsky:
Triangular prisms between rhombic dodecahedrons (1x1x3 diagonals).
Vladimir Мikhalkinsky:
Prism position between cubes
Vladimir Мikhalkinsky:
12 disjoint triangular prisms
Vladimir Мikhalkinsky:
12 prisms (diagonal 3x3x1)
Vladimir Мikhalkinsky:
12 prisms at the vertices of the zonohedron
Vladimir Мikhalkinsky:
Cubes for spatial filling with twelve deltoid prisms (diagonals 1x1x3).
Vladimir Мikhalkinsky:
A cube for filling the space with twelve deltoid prisms.
Vladimir Мikhalkinsky:
Cubes for spatial filling with twelve deltoid prisms. Diagonals 1x2x2.
Vladimir Мikhalkinsky:
Four twos non-intersecting frames and 8 triangles.
Vladimir Мikhalkinsky:
4 non-overlapping frames for spatial filling
Vladimir Мikhalkinsky:
Dimensions of four non-overlapping frameworks.
Vladimir Мikhalkinsky:
Cube with twelve non-overlapping deltoid prisms for spatial filling. Diagonals (1,2,2)
Vladimir Мikhalkinsky:
Eight triangular prism frameworks with no intersections.
Vladimir Мikhalkinsky:
24 triangular prism frames without intersections.