Daniel Sikar: SURF feature type, SVM classifier, creative mode. Job done
Daniel Sikar: Convolutional Neural Network, Histogram of Gradients (Support Vector Machine) and Speeded-Up Robust Features (Support Vector Machine) classifiers
Daniel Sikar: Misclassified face - Matlab vision.CascadeObjectDetector() III
Daniel Sikar: Misclassified face - Matlab vision.CascadeObjectDetector() II
Daniel Sikar: Augmentation - Blur plus 10 degree rotation
Daniel Sikar: Misclassified face - Matlab vision.CascadeObjectDetector()
Daniel Sikar: Image Augmentation - applying blur and rotation
Daniel Sikar: Facial recognition - end game
Daniel Sikar: Face masked Computer Vision class
Daniel Sikar: Another facemasked MSc student
Daniel Sikar: Added RGB facemask
Daniel Sikar: Student with added facemask
Daniel Sikar: MatLab matrix operations
Daniel Sikar: Facemaks negative mask
Daniel Sikar: 100x100 pixel facemask mask
Daniel Sikar: Facemask mask
Daniel Sikar: Matlab mouth detection I
Daniel Sikar: Matlab mouth detection II
Daniel Sikar: Facemask negative mask
Daniel Sikar: Facemask positive mask
Daniel Sikar: Cropped facemask 100 x 66 pixels
Daniel Sikar: Matlab image matrix operations
Daniel Sikar: ConfusionMatrix Grayscale Image x HOG Features x Support Vector Machine 4 classes - 10x10 cell size
Daniel Sikar: Histogram of Gradients 25x25 pixel cell size
Daniel Sikar: Histogram of Gradients 25x25 pixel cell size II
Daniel Sikar: Histogram of Gradients 10x10 pixel cell size
Daniel Sikar: Histogram of Gradients 10x10 pixel cell size II
Daniel Sikar: Histogram of Gradients 25x25 pixel cell size III
Daniel Sikar: Confusion Matrix - Grayscale Image x SURF Features x Support Vector Machine - 16 classes - Accuracy = 0.7250
Daniel Sikar: Grayscale Image x SURF x SVM Confusion Matrix, 3 classes